louas iris policies

Monday, April 28, 2008

Animals

Animals are a major set of organisms, classified as the empire Metazoa. In common they are multicultural, receptive to their surroundings, and afford for by overriding other organisms or parts of them. Their body plan becomes fixed when they enlarge, commonly early on in their growth as embryos, in spite of the fact that some feel a process of metamorphosis later on.

The word "animal" draws closer from the Latin word animal, of which Metazoa is the plural, and is resulting from anima, sense very significant breath or soul. In every day colloquial usage, the word often refers to non-human animals. The biological meaning of the word refers to every members of the empire Animalia. As a result, as the word "animal" is used in a biological condition, humans are included.

Sunday, April 20, 2008

Global financial system

The global financial system (GFS) is a financial system consisting of institutions and rules that act on the international level, as distinct to those that act on a national or regional level. The main players are the global institutions, such as International Monetary Fund and Bank for International Settlements, national agencies and government departments, e.g., central banks and finance ministries, and private institutions acting on the global scale, e.g., banks and hedge funds.

Sunday, April 06, 2008

Divergence theorem in maths

In vector calculus, the divergence theorem, as well known as Gauss' theorem, Ostrogradsky's theorem, or Gauss-Ostrogradsky theorem is an answer that relates the flow (that is, flux) of a vector field through a surface to the behavior of the vector field inside the surface.

More accurately, the divergence theorem states that the outward flux of a vector field through a surface is equal to the triple integral of the divergence on the region in the surface. Intuitively, it states that the sum of every source minus the sum of all sinks gives the net flow out of a region.

The divergence theorem is the main result for the mathematics of physics, particularly in electrostatics and fluid dynamics.